[image: image8.png]Support to the implementation of the Birds and
Habitats Directives in Bosnia and Herzegovina

Sumbula Avde 7, 71000 Sarajevo, Bosnia and Herzegovina
Tel: + 387 (0)33 264 006; Fax: + 387 (0)33 203 071
Email: m.krupic@prospect-cs.be

NATURA 2000

DETAIL DESIGN
Natura 2000

PILOT Application
Sarajevo – January 2013

[image: image8.png]
Table of Contents

5list of aBBREVIATION

71
Purpose of the document

71.1
Document validity

71.2
Reference documentation

82
INTRODUCTION

82.1
GIS technology overview

82.2
ArcGIS for Server

112.3
ArcGIS API for JavaScript

142.4
GeoServices REST

162.5
Map Service

202.6
Geoprocessing

212.7
Geometry Service

222.8
Feature Service

233
Service oriented architecture

243.1
GIS Service Oriented Architecture

264
geodatabase

264.1
Architecture of a geodatabase

295
Client side technologies

295.1
Single Page Application

295.2
HTML5 & CSS3

315.3
AngularJS

325.4
Dojo

335.5
jQuery

356
Data Model

356.1
SDF Data Model

356.2
Main schema description

557
Background themes - spatial data sets

568
Application Design

568.1
Software

568.2
Components

609
TECHICAL CHARACTERISTIC OF THE HOSTING INFRASTRUCTURE

609.1
SERVER1 - ArcGIS Server 10

619.2
GIS Server post installation

619.3
Web Applications post installation

629.4
ArcSDE for MSSQL

6310
TECHICAL CHARACTERISTIC OF THE HOSTING INFRASTRUCTURE

6310.1
SERVER1 - ArcGIS Server 10

6410.2
GIS Server post installation

6410.3
Web Applications post installation

6510.4
ArcSDE for MSSQL

list of aBBREVIATION

	Acronyms
	Meaning

	BiH
	Bosnia and Herzegovina

	CAD
	Computer-aided Drafting

	CSS
	Cascade Style Sheet

	DBMS
	Database Management System

	DOF
	Digital ortho-photo map

	DOM
	Document Object Model

	EEC
	European Economic Community

	ER
	Entity Relationship

	EU
	European Union

	EUD
	European Union Delegation

	FTHPIS
	Fault Tolerant High Performance Information Service

	GDB
	Geodatabase

	GIS
	Geographic Infomation System

	GML
	Geography Markup Language

	GUI
	Grapical User Interface

	HTML
	Hypertext Markup Language

	ICT
	Information and Communiaction Technology

	MoFTER
	Ministry of Foreign Trade and Economic Relations

	MS
	Microsoft

	N2K
	Natura 2000 BiH Pilot Application

	PM
	Project Manager

	PT
	Project team

	RS
	Republic of Srpska

	SDF
	Standard Data Form

	SIDA
	Swedish International Development Cooperation Agency

	SQL
	Sequence Query Language

	SOA
	Service Oriented Architecture

	SOAP
	Simple Object Access Protocol

	SOC
	Server Object Container

	SOM
	Server Object Manager

	SPA
	Special Protected Area

	SPA
	Single Page Application

	SQL
	Structured Query Language

	SVG
	Scalable Vector Graphics

	TA
	Technical Assistance

	TIN
	Triangulated Irregular Networks

	TK25
	Thematic map 1:25 000

	TL
	Team Leader

	ToR
	Terms of Reference

	UDDI
	Universal Description, Discovery and Integration

	UML
	Unified Modelling Language

	W3C
	World Wide Web Consortium

	WCS
	Web Coverage Service

	WFS
	Web Feature Service

	WMS
	Web Map Service

	WSDL
	Web Service Definition Language

	XHTML
	Extensible HyperTextMarkup Language

	XML
	Extensible Markup Language

1 Purpose of the document

The purpose of the document is to describe detail design of the Natura 2000 BiHPilot (N2K) Application components mentioned in Terms of Reference (ToR) document which is prepared by the Project team.

1.1 Document validity

Scope of the document encompass data model with description, application software characteristic and technical specification of the information and communication infrastructure available in Ministry of Foreign Trade and Economic Relations (MoFTER) that will be used for hosting N2K Pilot Application.

1.2 Reference documentation

· Terms of Reference.doc

· http://bd.eionet.europa.eu/activities/Natura_2000/reference_portal
2 INTRODUCTION

To minimise N2K custom solution development costs and in same time increase development efficiency existing MoFTER infrastructure with functional ArcGIS Server 10.0 product will be used.
2.1 GIS technology overview

A geographical information system (GIS) integrates hardware, software, and data for capturing, managing, analysing, and displaying all forms of geographically referenced information. GIS allowsus to view, understand, question, interpret, and visualise data in many ways that reveal relationships, patterns, and trends in the form of maps, globes, reports, and charts. A GIS helps answering questions and solve problems by looking at user data in a way that is quickly understood and easily shared. GIS technology can be integrated into any enterprise information system framework. Integration depends on requirements nature, application purpose, environment context, etc.
2.2 ArcGIS for Server

The ESRI ArcGIS Server applies three-tier architecture. The web server component of the ArcGIS Server architecture provides the functionality of the application server described in the generic multi-tier web GIS architecture. The web server hosts the web services and applications that are developed. It receives requests from clients and relays appropriate tasks to the GIS server.

The GIS server in this architecture is equivalent to the map server in the generic architecture. The GIS server hosts GIS resources such as maps, globes, and addresses locators, and exposes them as services to client applications.
The data server contains GIS resources that are published as services on the GIS server. These resources can be map documents, address locators, globe documents, geo-databases, and toolboxes.

The ArcGIS Server architecture implementation is very scalable and supports various functionalities needed in an end-to-end web GIS system such as geospatial data modelling, geoprocessing, analysis, web services development, and applications and tools development.
2.2.1 Working with ArcGIS Server

When using ArcGIS Server, a workflow of three steps is followed to make your geographic information available through the server:

· Authorthe GIS resource using ArcGIS Desktop.

· Publish the resource as a service using ArcGIS Server.

· Use the service through a client application.

	GIS resource
	What it can do in ArcGIS Server?
	Which ArcGIS Desktop application creates it?

	Map document or map service definition
	Mapping, geoprocessing, network analysis, Web Coverage Service (WCS) publishing, Web Feature Service (WFS) publishing, Web Map Service (WMS) publishing, mobile data publishing, KML publishing, geodatabase data extraction and replication
	ArcMap

	Address locator
	Geocoding
	ArcCatalog

	Geodatabase
	Geodatabase query, extraction, and replication; WCS publishing; WFS publishing
	ArcCatalog

	Globe document
	3D mapping
	ArcGlobe

	Toolbox
	Geoprocessing
	ArcMap or ArcCatalog through the Geoprocessing menu and ModelBuilder

	Raster dataset, mosaic dataset, or layer file referencing a raster dataset or mosaic dataset
	Imaging or WMS publishing
	ArcCatalog or ArcMap

GIS resources do not originate in ArcGIS Server; instead, you use ArcGIS Desktop to create them. To determine what GIS resources you need to author, it's important to think about what GIS functions you need to perform with ArcGIS Server. The table above displays the types of GIS resources that you can publish using ArcGIS Server, what they can do, and the corresponding ArcGIS Desktop application that can create the resource.
In N2K Toolbox and Geodatabase GIS resources are used.

2.2.2 Components of an ArcGIS server system
The main purpose of a GIS server is to host services and distribute them to client applications that need to use them. Additionally, the GIS server provides a set of tools that allow you to manage the services; for example, you can use the ArcGIS Server Manager application to add and remove services.
[image: image1.png]The ArcGIS Server System Architecture

Glents
—— fo—
—— Py
el
@ ety
ntomet
Web oIS
ey

s ooy

Figure 1: ArcGIS Server System Architecture
As shown in Figure 1, an ArcGIS Server System is made up of some of the following components:

· GIS server—The GIS server hosts your GIS resources, such as maps, globes, and address locators, and exposes them as services to client applications.

The GIS server itself is composed of two distinct parts: the server object manager (SOM) and server object containers (SOCs). As the name implies, the SOM manages the services running on the server. When a client application requests the use of a particular service, it's the SOM that actually provides one for the client to use.

The SOM connects to one or more SOCs. The SOC machines host the services that the SOM manages. Depending on your configuration, you can run the SOM and SOC on different machines and also have multiple SOC machines. The figure above shows a SOM machine connected to two SOC machines.

· Web server—The Web server hosts Web applications and services that use the resources running on the GIS server.

· Clients—Clients are Web, mobile, and desktop applications that connect to ArcGIS Server Internet services or ArcGIS Server local services.

· Data server—The data server contains the GIS resources that have been published as services on the GIS server. These resources can be map documents, address locators, globe documents, geodatabases, and toolboxes.

· Manager and ArcCatalog administrators—ArcGIS Server administrators can use either Manager or ArcCatalog to publish their GIS resources as services.

Manager is a Web application that supports publishing GIS resources as services, administering the GIS server, and creating Web applications on the server.

ArcCatalog includes a GIS Servers node, which can be used to add connections to GIS servers for either general server usage or administration of a server's properties and services.

· ArcGIS Desktop content authors—Toauthor the GIS resources, such as maps, geoprocessing tools, and globes that will be published to your server, you will need to use ArcGIS Desktop applications such as ArcMap, ArcCatalog, and ArcGlobe. Additionally, if you're creating a cached map service, you'll need to use ArcCatalog to create the cache.

2.3 ArcGIS API for JavaScript

The ArcGIS API for JavaScript is a lightweight way to embed maps and tasks in web applications.When developing with the ArcGIS API for JavaScript, a web server is required. This means that web pages and apps using the ArcGIS API for JavaScript need to be accessed overhttp://(or https://) rather than file://.
The JavaScript API is powered by a back-end REST API that is able to retrieve information statelessly from the server. When you run the application, the code runs in the browser instead of having to run on the server. This provides a quick and clean client experience. The JavaScript API is built on top of the Dojo JavaScript toolkit.
2.3.1 ArcGIS API for JavaScript Overview

	Browser support
	Safari 3+, Chrome, Forefox, IE 7+

	HTML5/CSS3 support
	CSS3 transforms for map navigation, Cross-origin resource sharing, drag and drop CSV on map, geolocation and CSS3 animations...

	Integration with ArcGIS Server
	Geometry service, geoprocessing, omage services, network analyst

	Mobile optimization
	API build specifically for mobile, Edit data using a smartphone, Popups designed for mobile devices

	Compatibility with other JavaScript frameworks
	jQuery, ExtJS

	Layer type support
	WMS, Bing, OSM, KML, Graphics(SVG,Canvas..), Feature layers, Dynamic map services, Tiled map services, custom layers

	Widgets
	Basemap Gallery, Map Bookmarks,Map Legend, Measurement Widget, Popup, Scalebar

Javascript API funcionality frequently used in N2K:
· Query-Query for input to theQueryTask. Not all query properties are required to execute a QueryTask. The query definition requires one of the following properties: queryGeometry, text, or where. Optional properties include outFields, outSpatialReference, and returnGeometry.

	//Creates a new Query object used to execute a query on the layer resource identified by the URL
require([

"esri/tasks/query", ...

], function(Query, ...) {

var query = new Query();

 ...

});

· QueryTask -Executes a query operation on a layer resource of a map service exposed by the ArcGIS Server REST API

	//Creates a new QueryTask object used to execute a query on the layer resource identified by the url.
require([

"esri/tasks/QueryTasks", ...

], function(QueryTasks, ...) {

varqueryTask = new QueryTask("http://sampleserver1.arcgisonline.com/ArcGIS/rest/services/Specialty/ESRI_StatesCitiesRivers_USA/MapServer/0");

 ...

});

· applyEdits - Apply edits to the feature layer. Only applicable for layers in a feature service.

	//applyEdits(adds?,updates?,deletes?,callback?,errback?)
require([

"esri/layers/FeatureLayer", ...

], function(FeatureLayer, ...) {

varfirePerimeterFL = newFeatureLayer(...);

vartargetGraphic = firePerimeterFL.getSelectedFeatures()[0].setGeometry(reshapedGeometry);

firePerimeterFL.applyEdits(null, [targetGraphic], null);

 ...

});

2.4 GeoServices REST
The GeoServices REST Specification provides a standard way for web clients to communicate with geographic information system (GIS) servers through Representational State Transfer (REST) technology. Clients issue requests to the server through structured URLs. The server responds with map images, text-based geographic information, or other resources that satisfy the request. Although the GeoServices REST Specification was originally built to communicate with Esri's ArcGIS® Server product, the specification has been opened such that developers can expose the GeoServices REST Specification request structure from other back-end GIS servers or processes.

The GeoServices REST Specification offers a simple way for applications to request map, feature, attribute, and image information from a GIS server. Developers who adopt the GeoServices REST Specification are choosing a proven implementation that has been widely deployed and exercised in the field and that exposes server-side resources to a broad range of clients and applications. They are also choosing a JSON-based, REST-ful specification that will make the server instantly usable by thousands of developers working in popular client-side development environments with the ArcGIS web mapping APIs for JavaScript™, Flex™, Silverlight®, iOS®, and Android™, all of which are powered by the GeoServices REST Specification.

To implement the GeoServices REST Specification, developers architect the back-end server to respond to specifically structured REST requests in an expected way. For example, if someone issues a request to the server to export a map image, such as http://<mapservice-url>/export?bbox=-127.8,15.4,-63.5,60.5, the server should return a map image with a lower left coordinate of (-127.8, 15.4) and an upper right coordinate of (-63.5, 60.5). How the server generated the image is not as important as the fact that it responded in an expected way when issued a URL whose structure followed the GeoServices REST Specification.

All resources and operations exposed by the GeoServices REST Specification are accessible through a hierarchy of endpoints or uniform resource locators (URLs) for each available GIS service. When using the GeoServices REST Specification, users typically start from a well-known endpoint, which represents the server catalog. From the catalog, different types of resources are available as child nodes. These resources comprise services for mapping, geocoding, and so on.

The GeoServices REST Specification is stateless because REST does not keep track of transactions from one request to the next. Each request must contain all the information necessary for successful processing.

The GeoServices REST Specification works with a hierarchy of resources. Each service type recognized by the GeoServices REST Specification (map, geocode, and so on) is a resource and has a unique URL. Although a REST system always returns only representations of resources to client, for the sake of simplicity, the resources of the GeoServices REST Specification are divided into two types: resources and operations.

The GeoServices REST Specification describes a catalog of web services that are designed for different GIS functions (map, geocode, and so on). Esri® ArcGIS Server can be considered a reference implementation of this specification, meaning that it implements all the service types in the catalog. The GeoServices REST Specification can be implemented with non-Esri GIS servers, but the back-end web services must respond to the URL formats described in the specification.

Many resources in the GeoServices REST Specification have a parameter, f, that denotes the response format. Developers can program resources to respond to REST requests with various data formats, including JSON, HTML, and KMZ.

At the least, the JSON response format should be implemented, and examples for doing so are provided in this specification. Other formats are optional, and they can be exposed through the f parameter; however, formats other than JSON are not detailed in this specification.

The catalog resource is the root node and initial entry point into a GIS server. This resource represents a catalog of folders and services published on the host.

The response optionally includes the specVersion and currentVersion properties. The specVersion is the version of the GeoServices REST Specification through which the catalog is implemented. If specVersion is not included in the response, its value is assumed to be 1.0.

The currentVersion property can be used to specify a version of the implementer's software.

· URL: http://<host>/.../<optional root folder >

· Services may optionally be organized into folders, yielding a URL such as http://<host>/…/<optional root folder>/<folderName>.

· Child Resources: Map Service, Geocode Service, GP Service, Geometry Service, Image Service, Feature Service.

Example

URL for the root directory of a GIS server:

· http://myserver/rest/services
· JSON Response Syntax

	{

"specVersion": <versionOfGeoServicesRestSpecification>,

"currentVersion": <versionOfImplementerSoftware>,

"folders":["<folderName1>", "<folderName2>"],

"services":[

 {"name" : "<serviceName1>", "type" : "<serviceType1>"},

 {"name" : "<serviceName2>", "type" : "<serviceType2>"}

]

}

2.5 Map Service

Map services offer access to map and layer content. A map service can either fulfil requests with pre-created tiles from a cache or by dynamically rendering the map each time a request comes in. Map services using a tile cache can significantly improve performance when returning maps, while dynamic map services offer more flexibility.

Map services can also expose tabular data, whether this is associated with geographic features or not. The REST response from a map service includes a table property that contains some basic information about tables. The child layer resource is a Layer/Table resource in that it represents either a layer or a table depending on the ID that was specified.

If the map supports querying and exporting maps based on time, the REST response includes a timeInfo property, which includes information about the map's time extent and the map's native time reference.

The GeoServices REST Specification Map Service resource provides basic information about the map, including the layers that it contains; whether the map has a tile cache; and the map's spatial reference, initial and full extents, map units, and copyright text. It also provides some metadata associated with the service such as its service description, its author, and keywords. If the map is cached, additional information about its tiling scheme, such as the origin of the cached tiles, the levels of detail, and tile size, is included.

The Map Service resource supports several operations:

· Export Map: Used to export a dynamically drawn map image.

· Identify: Returns information about features in one or more layers at a given location. This location commonly originates from a click of the mouse.

· Find: Returns information about features in one or more fields in one or more layers based on a keyword.

In addition to the above operations, a Query operation is available on a layer/table. It returns a subset of features in a layer or records in a table based on query criteria.

Map services do not expose editing capabilities. They provide read-only access to feature and attribute content. Feature services expose editing capabilities.

· URL: http://<catalog-url>/<serviceName>/MapServer
· Supported Operations: Export Map, Identify, Find

· Parent Resource: Catalog

· Child Resources: Map Tile, Layer/Table, All Layers/Tables

Example

URL for the StateCityHighway service on myserver:

· http://myserver/rest/services/StateCityHighway/MapServer
· JSON Response Syntax

	{

"serviceDescription" : "<serviceDescription>",

"mapName" : "<mapName>"
"description": "<description>",

"copyrightText" : "<copyrightText>",

"layers": [//the spatial layers exposed by this service
 {

"id" : <layerId1>,

"name" : "<layerName1>",

"defaultVisibility" : <true|false>,

"parentLayerId" : <parentLayerId1>,

"subLayerIds" : [<subLayerId11>, <subLayerId12>]

 },

{

"id" : <layerId2>,

"name" : "<layerName2>",

"defaultVisibility" : <true|false>,

"parentLayerId" : <parentLayerId2>,

"subLayerIds" : [<subLayerId21>, <subLayerId22>]

}

],

"tables": [//the tables exposed by this service
{

"id" : <tableId1>,

"name" : "<tableName1>"
},

{

"id" : <tableId2>,

"name" : "<tableName2>"
}

],

"spatialReference" : {<spatialReference>},

"singleFusedMapCache" : <true | false>,

"tileInfo": {

"rows" : <rows>, "cols" : <cols>, "dpi" : <dpi>, "format" : <format>, "compressionQuality" : <quality>,

"origin" : {<point>},

"spatialReference" : {<spatialReference>},

"lods": [

{"level" : <level1>, "resolution" : <resolution1>, "scale" : <scale1> },

{"level" : <level2>, "resolution" : <resolution2>, "scale" : <scale2> }

]

},

"initialExtent" : {<envelope>},

"fullExtent" : {<envelope>},

// if the map supports querying and exporting maps based on time
"timeInfo" : {

"timeExtent" : [<startTime>, <endTime>],

"timeReference" : {

"timeZone" : "<timeZone>",

"respectsDaylightSaving" : <true | false>

 }

},

"units" : "<units>",

"supportedImageFormatTypes" : "<supportedImageFormatTypes>",

"documentInfo": {

"<key1>" : "<value1>",

"<key2>" : "<value2>"
} ,

//comma-separated list of supported capabilities - e.g. "Map,Query,Data"
"capabilities" : "<capabilities>"
}

The Export Map operation is performed on a Map Service resource. The result of this operation provides information about the exported map image such as its URL, width and height, extent, and scale.

Apart from the usual response format of JSON, users can also request a format of image while performing this operation. When users export with the format of image, the server responds by directly streaming the image bytes to the client. With this approach, no information is associated with the exported map other than the actual image.

Note that the extent displayed in the exported map image may not exactly match the extent sent in the bounding box (bbox) parameter when the aspect ratio of the image size does not match the aspect ratio of the bbox. The aspect ratio is the height divided by the width. In these cases, the extent should be resized to prevent map images from appearing stretched. The exported map's extent is sent along with the JSON response and may be used in client-side calculations, so it is important that the client-side code update its extent based on the response.

For time-aware map services, the time parameter can be used to specify the time instant or the time extent for which to export the map. Users can also control time-based behaviour on a per-layer basis by using the layerTimeOptions parameter.

Users can provide arguments to the export operation as query parameters. These parameters include the request extent, size information, layer information, and transparency.

· URL: http://<mapservice-url>/export
· Parent Resource: Map Service

2.6 Geoprocessing
Geoprocessing (GP) is a fundamental part of enterprise GIS operations. Geoprocessing provides the data analysis, management, and conversion tools necessary for all GIS users.

A GP Service resource represents a collection of published tools that perform tasks necessary for manipulating and analysing geographic information across a wide range of disciplines. Each tool performs one or more operations, such as projecting a dataset from one map projection to another, adding fields to a table, or creating buffer zones around features. A tool accepts input (such as feature sets, tables, and property values), executes operations using the input data, and generates output for presentation in a map or further processing by the client. Tools can be executed synchronously (meaning a user must wait for the results before proceeding) or asynchronously (meaning a user can do other things while awaiting notice that the task has completed).

Use a GP service to do the following:

· List available tools and their input/output properties.

· Execute a task synchronously.

· Submit a job to a task asynchronously.

· Get job details, including job status.

· Display results using a map service.

· Retrieve results for further processing by the client.

Many uses of GIS involve the repetition of work, and this creates the need for a framework to automate workflows. GP services answer this need by using a model to combine a series of operations in a sequence and exposing the model as a tool.

The GeoServices REST Specification GP Service resource provides basic information associated with the service, such as the service description; the tasks provided; the execution type; and, optionally, whether the GP service has been configured to return map images for use with a given map service (as denoted by the resultMapServerName property).

The GP Service resource has operations that return results after a task is successfully completed. The supported operations are

· Execute Task: Used when the execution type is synchronous

· Submit Job: Used when the execution type is asynchronous

2.7 Geometry Service

A geometry service contains utility methods that provide access to sophisticated and frequently used geometric operations. The GeoServices REST Specification Geometry Service resource is primarily a processing and algorithmic resource that supports operations related to geometries. The Geometry Service resource has the following operations:

· Project: Returns an array of projected geometries

· Simplify: Returns an array of simplified geometries

· Buffer: Returns an array of polygons at the specified distances for the input geometry (An option is available to union buffer polygons at each distance.)

· Areas and Lengths: Calculates areas and perimeter lengths for each polygon specified in the input array

· Lengths: Calculates the lengths of each polyline specified in the input array

· Relation: Determines the pairs of geometries from the input geometry arrays that participate in the specified spatial relationship

· Label Points: Calculates an interior point for each polygon specified in the input array

· Distance: Reports the shortest distance between two points

· Densify: Densifies geometries by plotting intermediate points between existing vertices

· Generalize: Returns generalized (Douglas-Peucker) versions of the input geometries

· Convex Hull: Returns the convex hull of the input geometry

· Offset: Constructs the offset of the given input polyline based on an offset distance

· Trim/Extend: Trims or extends each polyline specified in the input array to meet user-specified guide polylines

· Auto Complete: Simplifies the process of constructing polygons that are adjacent to other polygons

· Cut: Splits the input polyline or polygon where it crosses a cutting polyline

· Difference: Constructs the set-theoretic difference between an array of geometries and another geometry

· Intersect: Constructs the set-theoretic intersection between an array of geometries and another geometry

· Reshape: Reshapes a polyline or part of a polygon using a reshaping line

· Union: Constructs the set-theoretic union of the input geometries

The above tasks could also optionally be accomplished through geoprocessing. The geometry service can be viewed as a lightweight alternative to a geoprocessing service, to be used for common operations.

Note that geometry input and output, where required, are always packaged as arrays.

2.8 Feature Service

A feature service allows clients to query and edit features. Features include geometry, attributes, and symbology and are organized into layers and subtypes within a layer.

The GeoServices REST Specification Feature Service resource provides basic information about the feature service: the feature layers and tables that it contains, the service description, and so on.

· URL: http://<catalog-url>/<serviceName>/FeatureServer

· Parent Resource: Catalog

· Child Resource: Layer

3 Service oriented architecture
Service Oriented Architecture (SOA) is a component-based software architecture model for enterprise application development and integration, as shown in Figure 2. A “service” is a reusable component used in a business process and generally defined according to Web service standards (XML, SOAP, WSDL, UDDI). Web services are registered and “loosely coupled," meaning that they can be combined and integrated on demand, increasingly on the basis of an “enterprise service bus” integration and messaging platform.

A service-oriented architecture is essentially a collection of services. These services communicate with each other. The communication can involve either simple data passing or it could involve two or more services coordinating some activity.

[image: image2.png]Mobile Systems. Deskiop.
Applications Applications.

!-

Occasionally
Connected

-~ Applications.

Web
Services

Databases

Goospatial
Applications.

Figure 2: SOA - Service Oriented Architecture
SOA is also an architectural style for building software applications that use services available in a network such as the web. Applications in SOA are built based on services. A service is an implementation of well-defined business functionality, and such services can then be consumed by clients in different applications or business processes.

SOA allows for the reuse of existing assets where new services can be created from an existing IT infrastructure of systems. In other words, it enables businesses to leverage existing investments by allowing them to reuse existing applications, and promises interoperability between heterogeneous applications and technologies.

SOA enables distribution through functional decomposition of the system into objects that interact at interfaces. The value of SOA is that it provides a powerful framework for matching needs and capabilities. The SOA can be implemented at many different network environments.

[image: image3.png]Find Publish

Figure 3: SOA paradigm
SOA uses the find-bind- publish paradigm as shown in Figure 3. In this paradigm, service providers register their service in a public registry. This registry is used by service consumers to find services that match certain criteria. If the registry has such a service, it provides the consumer with a contract and an endpoint address for that service.
3.1 GIS Service Oriented Architecture

Geospatially-enabled applications are increasingly supporting enterprise-level analysis and decision support in all industries, fueled in part by the advantages of SOA. In this way, users can author and publish a variety of geospatial services. These can be served to the larger enterprise, where users can flexibly integrate them with new and legacy application services, and thereby create new knowledge that enriches the enterprise. In order to create SOA architecture for the GIS services Web Service correspondences of each GIS services should be created. GIS services can be grouped into three categories:

GIS services can be grouped into three categories:

· Data Services are tightly coupled with specific data sets and offer access to customized portions of that data. Web Feature Service (WFS), Web Mapping Service (WMS) and Web Coverage Service (WCS) can be considered in this group. WMS produces maps as two-dimensional visual portrayals of geospatial data. WCS provides access to un-rendered geospatial information. WFS provides geospatial feature data encoded in Geography Markup Language (GML).

· Processing Services provide operations for processing or transforming data in a manner determined by user-specific parameters. They provide generic processing functions such as projection and coordinate conversion, rasterisation and vectorisation.

· Registry or Catalogue Service allows users and applications to classify, register, describe, search, maintain, and access information about Web Services. Web Registry Service, Web Catalogue Service, and our implementation of registry catalogue service, Fault Tolerant High Performance Information Service (FTHPIS), are considered in this group.

The basic operations in SOA include publish, find, bind and chain. To be able to integrate any GIS services into SOA architecture, at least one of the SOA’s major operations should be provided.
4 geodatabase

At its most basic level, an ArcGIS geodatabase is a collection of geographic datasets of various types held in a common file system folder, a Microsoft Access database, or a multiuser relational DBMS (such as Oracle, Microsoft SQL Server, PostgreSQL, Informix, or IBM DB2). Geodatabases come in many sizes, have varying numbers of users and can scale from small, single-user databases built on files up to larger workgroup, department, and enterprise geodatabases accessed by many users.

But a geodatabase is more than a collection of datasets; the term geodatabase has multiple meanings in ArcGIS:

· The geodatabase is the native data structure for ArcGIS and is the primary data format used for editing and data management. While ArcGIS works with geographic information in numerous geographic information system (GIS) file formats, it is designed to work with and leverage the capabilities of the geodatabase.

· It is the physical store of geographic information, primarily using a database management system (DBMS) or file system. You can access and work with this physical instance of your collection of datasets either through ArcGIS or through a database management system using SQL.

· Geodatabases have a comprehensive information model for representing and managing geographic information. This comprehensive information model is implemented as a series of tables holding feature classes, raster datasets, and attributes. In addition, advanced GIS data objects add GIS behaviour; rules for managing spatial integrity; and tools for working with numerous spatial relationships of the core features, rasters, and attributes.

· Geodatabase software logic provides the common application logic used throughout ArcGIS for accessing and working with all geographic data in a variety of files and formats. This supports working with the geodatabase, and it includes working with shapefiles, computer-aided drafting (CAD) files, triangulated irregular networks (TINs), grids, CAD data, imagery, Geography Markup Language (GML) files, and numerous other GIS data sources.

· Geodatabases have a transaction model for managing GIS data workflows.

4.1 Architecture of a geodatabase
The geodatabase storage model is based on a series of simple yet essential relational database concepts and leverages the strengths of the underlying database management system (DBMS). Simple tables and well-defined attribute types are used to store the schema, rule, base, and spatial attribute data for each geographic dataset. This approach provides a formal model for storing and working with your data. Through this approach, structured query language (SQL)—a series of relational functions and operators—can be used to create, modify, and query tables and their data elements.

It can be seen how this works by examining how a feature with polygon geometry is modelled in the geodatabase. A feature class is stored as a table, often referred to as the base or business table. Each row in the table represents one feature. The shape column stores the polygon geometry for each feature. The contents of this table, including the shape when stored as a SQL spatial type, can be accessed through SQL.

However, adding spatial types and SQL support for spatial attributes to a DBMS is not enough on its own to support GIS. ArcGIS employs a multitier application architecture by implementing advanced logic and behaviour in the application tier on top of the geodatabase storage model. This application logic includes support for a series of generic geographic information system (GIS) data objects and behaviours such as feature classes, raster datasets, topologies, networks, and much more.

The geodatabase is implemented using the same multitier application architecture found in other advanced DBMS applications; there is nothing exotic or unusual about in its implementation. The multitier architecture of the geodatabase is sometimes referred to as an object-relational model. The geodatabase objects persist as rows in DBMS tables that have identity, and the behaviour is supplied through the geodatabase application logic. The separation of the application logic from the storage is what allows support for several different DBMSs and data formats.

At the core of the geodatabase is a standard relational database schema (a series of standard database tables, column types, indexes, and other database objects). The schema is persisted in a collection of geodatabase system tables in the DBMS that defines the integrity and behaviour of the geographic information. These tables are stored either as files on disk or within the contents of a DBMS such as Oracle, IBM DB2, PostgreSQL, IBM Informix, or Microsoft SQL Server.

Well-defined column types are used to store traditional tabular attributes. When the geodatabase is stored within a DBMS, spatial representations, most commonly represented by vectors or rasters, are generally stored using an extended spatial type.

[image: image4.png]

Figure 4: Architecture of a geodatabase
Within the geodatabase, there are two primary sets of tables; system tables and dataset tables.

· Dataset tables—Each dataset in the geodatabase is stored in one or more tables. The dataset tables work with the system tables to manage data.

· System tables—The geodatabase system tables keep track of the contents of each geodatabase. They essentially describe the geodatabase schema that specifies all dataset definitions, rules, and relationships. These system tables contain and manage all the metadata required to implement geodatabase properties, data validation rules, and behaviours.

The internal structure of these tables was restructured beginning with the ArcGIS 10 release. The information related to the schema in the geodatabase, which prior to ArcGIS 10 was stored in over 35 geodatabase system tables, was consolidated into four main tables:

· GDB_Items—Contains a listing of all items contained within a geodatabase such as feature classes, topologies and domains

· GDB_ItemTypes—Contains a predefined list of recognized item types, such as Table

· GDB_ItemRelationships—Contains schema associations between items such as which feature classes are contained within a feature dataset

· GDB_ItemRelationshipTypes—Contains a predefined list of recognised relationship types such as DatasetInFeatureDataset

The dataset and system tables work together to present and manage the contents of a geodatabase. For example, when viewed in the underlying storage format, a feature class is simply a table with a spatial column. However, when accessed through ArcGIS, all of the rules stored in the system tables are combined with the underlying data to present it as a feature class with all of the defined behaviour.

5 Client side technologies
5.1 Single Page Application
A single-page application (SPA), also known as single-page interface (SPI), is a web application or web site that fits on a single web page with the goal of providing a more fluid user experience akin to a desktop application.

In an SPA, either all necessary code – HTML, JavaScript, and CSS – is retrieved with a single page load, or the appropriate resources are dynamically loaded and added to the page as necessary, usually in response to user actions. Interaction with the single page application involves dynamic communication with the web server behind the scenes.
5.2 HTML5 & CSS3

HTML5 is a markup language used for structuring and presenting content for the World Wide Web and a core technology of the Internet. It is the fifth revision of the HTML standard (created in 1990 and standardized as HTML 4 as of 1997) and, as of December 2012, is a candidate recommendation of the World Wide Web Consortium (W3C). Its core aims have been to improve the language with support for the latest multimedia while keeping it easily readable by humans and consistently understood by computers and devices (web browsers, parsers, etc.). HTML5 is intended to subsume not only HTML 4, but also XHTML 1 and DOM Level 2 HTML.

In particular, HTML5 adds many new syntactic features. These include the new <video>, <audio> and <canvas> elements, as well as the integration of scalable vector graphics (SVG) content (that replaces the uses of generic <object> tags) and MathML for mathematical formulas. These features are designed to make it easy to include and handle multimedia and graphical content on the web without having to resort to proprietary plugins and APIs. Other new elements, such as <section>, <article>, <header> and <nav>, are designed to enrich the semantic content of documents. New attributes have been introduced for the same purpose, while some elements and attributes have been removed. Some elements, such as <a>, <cite> and <menu> have been changed, redefined or standardized. The APIs and Document Object Model (DOM) are no longer afterthoughts, but are fundamental parts of the HTML5 specification. HTML5 also defines in some detail the required processing for invalid documents so that syntax errors will be treated uniformly by all conforming browsers and other user agents.

CSS is a style sheet language used for describing the look and formatting of a document written in a markup language. While most often used to style web pages and interfaces written in HTML and XHTML, the language can be applied to any kind of XML document, including plain XML, SVG and XUL. CSS is designed primarily to enable the separation of document content from document presentation, including elements such as the layout, colors, and fonts. This separation can improve content accessibility, provide more flexibility and control in the specification of presentation characteristics, enable multiple pages to share formatting, and reduce complexity and repetition in the structural content.

CSS can also allow the same markup page to be presented in different styles for different rendering methods, such as on-screen, in print, by voice (when read out by a speech-based browser or screen reader) and on Braille-based, tactile devices. It can also be used to allow the web page to display differently depending on the screen size or device on which it is being viewed. While the author of a document typically links that document to a CSS file, readers can use a different style sheet, perhaps one on their own computer, to override the one the author has specified.

CSS specifies a priority scheme to determine which style rules apply if more than one rule matches against a particular element. In this so-called cascade, priorities or weights are calculated and assigned to rules, so that the results are predictable.

The CSS specifications are maintained by the World Wide Web Consortium (W3C). Internet media type (MIME type) text/css is registered for use with CSS by RFC 2318 (March 1998), and they also operate a free CSS validation service.
CSS3 has been split into "modules". It contains the "old CSS specification" (which has been split into smaller pieces). In addition, new modules are added.

Some of the most important CSS3 modules are:

· Selectors

· Box Model

· Backgrounds and Borders

· Image Values and Replaced Content

· Text Effects

· 2D/3D Transformations

· Animations

· Multiple Column Layout

· User Interface

5.3 AngularJS
AngularJS is an open-source JavaScript framework, maintained by Google, that assists with running single-page applications. Its goal is to augment browser-based applications with model–view–controller (MVC) capability, in an effort to make both development and testing easier.

The library reads in HTML that contains additional custom tag attributes. It then obeys the directives in those custom attributes, and binds input or output parts of the page to a model represented by standard JavaScript variables. The values of those JavaScript variables can be manually set, or retrieved from static or dynamic JSON resources.

	<!--Simple example of using angularJS directives -->
<!doctypehtml>
<htmlng-app>
<head>
<scriptsrc="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.7/angular.min.js"></script>
</head>
<body>
<div>
<label>Name:</label>
<inputtype="text"ng-model="yourName"placeholder="Enter a name here">
<hr>
<h1>Hello {{yourName}}!</h1>
</div>
</body>
</html>

AngularJS directives allow the developer to specify custom and reusable HTML tags that moderate the behaviour of certain elements.
Notable Angular directives:

· ng-app - Declares an element as a root element of the application allowing behaviour to be modified through custom HTML tags.

· ng-bind - Automatically changes the text of a HTML element to the value of a given expression.

· ng-model - Similar to ng-bind, but allows two-way data binding between the view and the scope.

· ng-class - Allows class attributes to be dynamically loaded.

· ng-controller - Specifies a JavaScript controller class that evaluates HTML expressions.

· ng-repeat - Instantiate an element once per item from a collection.

· ng-show& ng-hide - Conditionally show or hide an element, depending on the value of a boolean expression.

· ng-switch - Conditionally instantiate one template from a set of choices, depending on the value of a selection expression.

· ng-view - The base directive responsible for handling routes that resolve JSON before rendering templates driven by specified controllers.

· ng-if - Basic if statement directive which allow to show the following element if the conditions are true.

AngularJS' two-way data binding is its most notable feature and reduces the amount of code written by relieving the server backend from templating responsibilities. Instead, templates are rendered in plain HTML according to data contained in a scope defined in the model. The $scope service in Angular detects changes to the model section and modifies HTML expressions in the view via a controller. Likewise, any alterations to the view are reflected in the model. This circumvents the need to actively manipulate the DOM and encourages bootstrapping and rapid prototyping of web applications.

5.4 Dojo
Dojo is a JavaScript framework targeting the many needs of large-scale client-side web development. For example, Dojo abstracts the differences among diverse browsers to provide APIs that will work on all of them (it can even run on the server under Node.js).

· It establishes a framework for defining modules of code and managing their interdependencies

· It provides build tools for optimising JavaScript and CSS, generating documentation, and unit testing; it supports internationalization, localization, and accessibility

· It provides a rich suite of commonly needed utility classes and user-interface widgets
Dojo is completely open-source. The entire toolkit can be downloaded as a ZIP and is also hosted on the Google CDN. The toolkit includes about three thousand JavaScript modules, in addition to images and other resources.

The Dojo Toolkit is organized in several parts:

· dojo contains the core and most non-visual modules.

· dijit is a library of user-interface modules for widgets and layout.

· dojox holds assorted modules not yet considered stable enough to include in dojo or dijit.

· utilincludes build tools such as optimization, documentation, style-checking, and testing.
5.5 jQuery

jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML.

jQuery is free, open source software, licensed under the MIT License. jQuery's syntax is designed to make it easier to navigate a document, select DOM elements, create animations, handle events, and develop Ajax applications. jQuery also provides capabilities for developers to create plug-ins on top of the JavaScript library. This enables developers to create abstractions for low-level interaction and animation, advanced effects and high-level, theme-able widgets. The modular approach to the jQuery library allows the creation of powerful dynamic web pages and web applications.

The set of jQuery core features — DOM element selections, traversal and manipulation — enabled by its selector engine (named "Sizzle" from v1.3), created a new "programming style", fusing algorithms and DOM-data-structures; and influenced the architecture of other JavaScript frameworks like YUI v3 and Dojo.
jQuery features:
· DOM element selections using the multi-browser open source selector engine Sizzle, a spin-off of the jQuery project

· DOM traversal and modification (including support for CSS 1–3)

· DOM manipulation based on CSS selectors that uses node elements name and node elements attributes (id and class) as criteria to build selectors

· Events

· Effects and animations

· AJAX

· JSON parsing

· Extensibility through plug-ins

· Utilities - such as user agent information, feature detection

· Compatibility methods that are natively available in modern browsers but need fall backs for older ones - For example the inArray() and each() functions.

· Multi-browser (not to be confused with cross-browser) support.
6 Data Model

6.1 SDF Data Model

A geodatabase data model developed according to the Standard Data Form (SDF) schema described in details below.
6.2 Main schema description

6.2.1 COUNTRY

	FIELD
	SDF
	Data Type

	COUNTRY_ID
	INTERNAL DATA BASE MODEL ID
	Int

	COUNTRY_CODE
	Two digit country code the site belongs to
	Nvarchar(2)

	COUNTRY_NAME
	
	Nvarchar(64)

6.2.2 DOC

	FIELD
	SDF
	Data Type

	DOC_ID
	INTERNAL DATA BASE MODEL ID
	Int

	DOC_DESCRIPTION
	4.5,- Documentation (optional)
	Nvarchar(4000)

6.2.3 DOC_LINK

	FIELD
	SDF
	Data Type

	DOC_LINK_ID
	INTERNAL DATA BASE MODEL ID
	Int

	DOC_LINK_URL
	4.5,- Documentation (optional)
	Nvarchar(256)

	DOC_ID
	INTERNAL DATA BASE MODEL ID
	Int(11)

6.2.4 HABITAT

	FIELD
	SDF
	Data Type

	HABITAT_ID
	INTERNAL DATA BASE MODEL ID
	Int

	HABITAT_CODE
	3.1,- Habitat types present on the site and site evaluation for them
	Nvarchar(4)

	HABITAT_PRIORITY
	3.1,- Habitat types present on the site and site evaluation for them
	Smallint

	HABITAT_NP
	3.1,- Habitat types present on the site and site evaluation for them
	Smallint

	HABITAT_COVER
	3.1,- Habitat types present on the site and site evaluation for them
	Double

	HABITAT_CAVES
	3.1,- Habitat types present on the site and site evaluation for them
	Int

	HABITAT_DATA_QUALITY
	3.1,- Habitat types present on the site and site evaluation for them
	Nvarchar(2)

	HABITAT_RELATIVE_SURFACE
	3.1,- Habitat types present on the site and site evaluation for them
	Nvarchar (1)

	HABITAT_CONSERVATION
	3.1,- Habitat types present on the site and site evaluation for them
	Nvarchar (1)

	HABITAT_GLOBAL
	3.1,- Habitat types present on the site and site evaluation for them
	Nvarchar (1)

	SITE_CODE
	INTERNAL DATA BASE MODEL ID
	Nvarchar (9)

	HABITAT_COVER_HA
	3.1,- Habitat types present on the site and site evaluation for them
	Double

6.2.5 HABITAT_CLASS

	FIELD
	SDF
	Data Type

	HABITAT_CLASS_ID
	INTERNAL DATA BASE MODEL ID
	Int

	HABITAT_CLASS_CODE
	4.1,- General site character
	Nvarchar (4)

	HABITAT_CLASS_DESCRIPTION
	4.1,- General site character
	Nvarchar (256)

	HABITAT_CLASS_COVER
	4.1,- General site character
	Double

	SITE_CODE
	INTERNAL DATA BASE MODEL ID
	Nvarchar (9)

6.2.6 IMPACT

	FIELD
	SDF
	Data Type

	IMPACT_ID
	INTERNAL DATA BASE MODEL ID
	Int

	IMPACT_TYPE
	4.3,- Threats, pressures and activities with impacts on the site
	Nvarchar (1)

	IMPACT_RANK
	4.3,- Threats, pressures and activities with impacts on the site
	Nvarchar (1)

	IMPACT_CODE
	4.3,- Threats, pressures and activities with impacts on the site
	Nvarchar (16)

	IMPACT_POLLUTION_CODE
	4.3,- Threats, pressures and activities with impacts on the site
	Nvarchar (1)

	IMPACT_OCCURRENCE
	4.3,- Threats, pressures and activities with impacts on the site
	Nvarchar (1)

	SITE_CODE
	
	Nvarchar (9)

6.2.7 MAP

	FIELD
	SDF
	Data Type

	MAP_ID
	INTERNAL DATA BASE MODEL ID
	Int

	MAP_INSPIRE
	7,- MAP OF THE SITES
	Nvarchar (128)

	MAP_PDF
	7,- MAP OF THE SITES
	Smallint(6)

	MAP_REFERENCE
	7,- MAP OF THE SITES
	Nvarchar (1024)

6.2.8 MGMT

	FIELD
	SDF
	Data Type

	MGMT​_ID
	INTERNAL DATA BASE MODEL ID
	Int(11)

	MGMT_STATUS
	6.2,- Managment plan (‘existance’)
	Nvarchar (1)

	MGMT_CONSERVATION_MEASURES
	6.3,- Conservation measures (optional)
	Nvarchar(4000)

6.2.9 MGMT_BODY

	FIELD
	SDF
	Data Type

	MGMT_BODY_ID
	INTERNAL DATA BASE MODEL ID
	Int

	MGMT_BODY_ORG
	6.1,- Body(ies) responsible for the site management
	Nvarchar (256)

	MGMT_BODY_ADDRESS
	6.1,- Body(ies) responsible for the site management
	Nvarchar (1024)

	MGMT_BODY_EMAIL
	6.1,- Body(ies) responsible for the site management
	Nvarchar (64)

	MGMT_ADMINUNIT
	
	Nvarchar (256)

	MGMT_LOCATORDESIGNATOR
	
	Nvarchar (256)

	MGMT_LOCATORNAME
	
	Nvarchar (256)

	MGMT_ADDRESAREA
	
	Nvarchar (256)

	MGMT_POSTNAME
	
	Nvarchar (256)

	MGMT_POSTCODE
	
	Nvarchar (256)

	MGMT_THROUGHFARE
	
	Nvarchar (256)

	MGMT_ID
	INTERNAL DATA BASE MODEL ID
	Int

6.2.10 MGMT_PLAN

	FIELD
	SDF
	Data Type

	MGMT_PLAN_ID
	INTERNAL DATA BASE MODEL ID
	Int

	MGMT_PLAN_NAME
	6.2,- Management plan(s)
	Nvarchar(4000)

	MGMT_PLAN_URL
	6.2,- Management plan(s)
	Nvarchar (256)

	MGMT_ID
	INTERNAL DATA BASE MODEL ID
	Int

6.2.11 MUNICIPALITY

	FIELD
	SDF
	Data Type

	MUNICIPALITY_ID
	INTERNAL DATA BASE MODEL ID
	Int

	MUNICITAPLITY_CODE
	
	Nvarchar (50)

	MUNICITAPLITY_NAME
	
	Nvarchar (128)

	SITE_CODE
	
	Nvarchar (9)

6.2.12 NATIONAL_DTYPE

	FIELD
	SDF
	Data Type

	NATIONAL_DTYPE_ID
	INTERNAL DATA BASE MODEL ID
	Int

	NATIONAL_DTYPE_CODE
	5.1,- Designation types at national and regional level
	Nvarchar (4)

	NATIONAL_DTYPE_COVER
	5.1,- Designation types at national and regional level
	Double

	SITE_CODE
	
	Nvarchar (9)

6.2.13 OTHER_SPECIES

	FIELD
	SDF
	Data Type

	OTHER_SPECIES_ID
	INTERNAL DATA BASE MODEL ID
	Int

	OTHER_SPECIES_GROUP
	3.3,- Other important species of flora and fauna
	Nvarchar (2)

	OTHER_SPECIES_CODE
	3.3,- Other important species of flora and fauna
	Nvarchar (4)

	OTHER_SPECIES_NAME
	3.3,- Other important species of flora and fauna
	Nvarchar (128)

	OTHER_SPECIES_SENSITIVE
	3.3,- Other important species of flora and fauna
	Smallint

	OTHER_SPECIES_NP
	3.3,- Other important species of flora and fauna
	Smallint

	OTHER_SPECIES_SIZE_MIN
	3.3,- Other important species of flora and fauna
	Int

	OTHER_SPECIES_SIZE_MAX
	3.3,- Other important species of flora and fauna
	Int

	OTHER_SPECIES_UNIT
	3.3,- Other important species of flora and fauna
	Nvarchar (32)

	OTHER_SPECIES_CATEGORY
	3.3,- Other important species of flora and fauna
	Nvarchar (1)

	OTHER_SPECIES_MOTIVATION
	3.3,- Other important species of flora and fauna
	Nvarchar (50)

	SITE_CODE
	
	Nvarchar (9)

6.2.14 OWNERSHIP

	FIELD
	SDF
	Data Type

	OWNERSHIP_ID
	INTERNAL DATA BASE MODEL ID
	Int

	OWNERSHIP_TYPE
	4.4,- Ownership (optional)
	Nvarchar (32)

	OWNERSHIP_CODE
	
	Nvarchar (32)

6.2.15 REF_BIOGEO

	FIELD
	SDF
	Data Type

	BIOGEO_ID
	INTERNAL DATA BASE MODEL ID
	Int

	BIOGEO_NAME
	
	Nvarchar (64)

	BIOGEO_CODE
	
	Nvarchar (64)

6.2.16 REF_BIRDS

	FIELD
	SDF
	Data Type

	REF_BIRDS_ID
	
	Int

	REF_BIRDS_CODE
	
	Nvarchar (16)

	REF_BIRDS_NAME
	
	Nvarchar (128)

	REF_BIRDS_ANNEXI
	
	Smallint

	REF_BIRDS_ANNEXIIPA
	
	Smallint

	REF_BIRDS_ANNEXIIPB
	
	Smallint

	REF_BIRDS_ANNEXIIIPA
	
	Smallint

	REF_BIRDS_ANNEXIIIPB
	
	Smallint

	REF_BIRDS_CODE_NEW
	
	Nvarchar(1)

	REF_BIRDS_ALT_SCIENTIFIC_NAME
	
	Nvarchar(1024)

6.2.17 REF_CATEGORY

	FIELD
	SDF
	Data Type

	CATEGORY_ID
	INTERNAL DATA BASE MODEL ID
	Int

	CATEGORY _NAME
	
	Nvarchar (256)

	CATEGORY _CODE
	
	Nvarchar (1)

	CATEGORY_SPECIES
	
	Nvarchar (1)

6.2.18 REF_CONVENTIONS

	FIELD
	SDF
	

	REF_CONVENTIONS_ID
	INTERNAL DATA BASE MODEL ID
	Int

	REF_CONVENTIONS _NAME
	
	Nvarchar (64)

	REF_CONVENTIONS _CODE
	
	Nvarchar (64)

6.2.19 REF_DATA_QUALITY

	FIELD
	SDF
	

	QUALITY _ID
	INTERNAL DATA BASE MODEL ID
	Int

	QUALITY _NAME
	
	Nvarchar (256)

	QUALITY _CODE
	
	Nvarchar (2)

	QUALITY_SPECIES
	
	Nvarchar (1)

6.2.20 REF_DESIGNATIONS

	FIELD
	SDF
	Data Type

	REF_DESIGNATIONS_ID
	
	Int

	REF_DESIGNATIONS_CODE
	
	Nvarchar (16)

	REF_DESIGNATIONS_DESCR
	
	Nvarchar (512)

	REF_DESIGNATIONS_CATEGORY
	
	Nvarchar (1)

6.2.21 REF_HAB_CLASSES

	FIELD
	SDF
	Data Type

	REF_HAB_CLASSES_ID
	
	Int

	REF_HAB_CLASSES _CODE
	
	Nvarchar (3)

	REF_HAB_CLASSES _DESCR_EN
	
	Nvarchar (128)

	REF_HAB_CLASSES _DESCR_FR
	
	Nvarchar (128)

6.2.22 REF_HABITATS

	FIELD
	SDF
	Data Type

	REF_HABITATS_ID
	
	Int

	REF_HABITATS_CODE
	
	Nvarchar (8)

	REF_HABITATS_PRIORITY
	
	Smallint

	REF_HABITATS_DESC_EN
	
	Nvarchar (1024)

	REF_HABITATS_DESC_FR
	
	Nvarchar (1024)

	REF_HABITATS_DESC_DE
	
	Nvarchar (1024)

	REF_HABITATS_DESC_ES
	
	Nvarchar (1024)

	REF_HABITATS_DESC_IT
	
	Nvarchar (1024)

	REF_HABITATS_DESC_NL
	
	Nvarchar (1024)

	REF_HABITATS_DESC_PT
	
	Nvarchar (1024)

	REF_HABITATS_DESC_DK
	
	Nvarchar (1024)

6.2.23 REF_IMPACT_POLLUTION

	FIELD
	SDF
	Data Type

	POLLUTION_ID
	INTERNAL DATA BASE MODEL ID
	Int

	POLLUTION _NAME
	
	Nvarchar (256)

	POLLUTION _CODE
	
	Nvarchar (1)

6.2.24 REF_IMPACT_RANK

	FIELD
	SDF
	Data Type

	RANK_ID
	INTERNAL DATA BASE MODEL ID
	Int

	RANK _NAME
	
	Nvarchar (256)

	RANK_CODE
	
	Nvarchar (1)

6.2.25 REF_IMPACTS

	FIELD
	SDF
	Data Type

	REF_IMPACTS_ID
	
	Int

	REF_IMPACTS_CODE
	
	Nvarchar (32)

	REF_IMPACTS_DESCR
	
	Nvarchar (1024)

	REF_IMPACTS_REMARKS
	
	Nvarchar (1024)

	REF_IMPACTS_OLDCODE_REFPORT
	
	Nvarchar (32)

	REF_IMPACTS_OLDCODE_CROSSLINK
	
	Nvarchar (32)

6.2.26 REF_MUNICIPALITIES

	FIELD
	SDF
	Data Type

	REF_MUN_ID
	
	Int

	REF_MUN_CODE
	
	Nvarchar (50)

	REF_MUN_NAME
	
	Nvarchar (128)

	REF_MUN_DESC
	
	Nvarchar(4000)

	REF_MUN_ENTITY
	
	Nvarchar (10)

6.2.27 REF_NUTS

	FIELD
	SDF
	Data Type

	REF_NUTS_ID
	
	Int

	REF_NUTS_CODE
	
	Nvarchar (12)

	REF_NUTS_DESCRIPTION
	
	Nvarchar (256)

6.2.28 REF_POPULATION_TYPE

	FIELD
	SDF
	Data Type

	POPULATION_ID
	
	Int

	POPULATION_NAME
	
	Nvarchar (256)

	POPULATION_CODE
	
	Nvarchar (1)

6.2.29 REF_SPECIES

	FIELD
	SDF
	Data Type

	REF_SPECIES_ID
	
	Int

	REF_SPECIES_CODE
	
	Nvarchar (16)

	REF_SPECIES_NAME
	
	Nvarchar (128)

	REF_SPECIES_GROUP
	
	Nvarchar (1)

	REF_SPECIES_ANNEX_I
	
	Nvarchar (1)

	REF_SPECIES_ ANNEX_IV
	
	Nvarchar (1)

	REF_SPECIES_ ANNEX_V
	
	Nvarchar (1)

	REF_SPECIES_ALT_SCIENTIFIC_NAME
	
	Nvarchar (1024)

	REF_SPECIES_HD_SCIENTIFIC_NAME
	
	Nvarchar (1024)

	REF_SPECIES_CODE_NEW
	
	Nvarchar (1)

6.2.30 REF_SPECIES_GROUP

	FIELD
	SDF
	Data Type

	GROUP_ID
	INTERNAL DATA BASE MODEL ID
	Int

	GROUP _NAME
	
	Nvarchar (256)

	GROUP _CODE
	
	Nvarchar (2)

	GROUP_SPECIES
	
	Nvarchar (1)

6.2.31 REF_UNIT

	FIELD
	SDF
	Data Type

	UNIT_ID
	INTERNAL DATA BASE MODEL ID
	Int

	UNIT_NAME
	
	Nvarchar (256)

	UNIT_CODE
	
	Nvarchar (124)

6.2.32 REGION

	FIELD
	SDF
	Data Type

	REGION_ID
	INTERNAL DATA BASE MODEL ID
	Int

	REGION_CODE
	2.5,- Administrative region code and name
	Nvarchar (4)

	REGION_NAME
	2.5,- Administrative region code and name
	Nvarchar (128)

	SITE_CODE
	
	Nvarchar (9)

6.2.33 RESP

	FIELD
	SDF
	Data Type

	RESP_ID
	INTERNAL DATA BASE MODEL ID
	Int

	RESP_NAME
	1.6,- Respondent
	Nvarchar (1024)

	RESP_ADDRESS
	1.6,- Respondent
	Nvarchar (1024)

	RESP_EMAIL
	1.6,- Respondent
	Nvarchar (256)

	RESP_ADMINUNIT
	
	Nvarchar (256)

	RESP_LOCATORDESIGNATOR
	
	Nvarchar (256)

	RESP_LOCATORNAME
	
	Nvarchar (256)

	RESP_ADDRESAREA
	
	Nvarchar (256)

	RESP_POSTNAME
	
	Nvarchar (256)

	RESP_POSTCODE
	
	Nvarchar (256)

	RESP_THROUGHFARE
	
	Nvarchar (256)

6.2.34 SITE

	FIELD
	SDF
	Data Type

	SITE_CODE
	1.2,- Site code
	Nvarchar (9)

	SITE_TYPE
	1.1,- Type
	Nvarchar (1)

	SITE_NAME
	1.3,- Site name
	Nvarchar (256)

	SITE_COMP_DATE
	1.4,- First Compilation date
	datetime2(7)

	SITE_UPDATE_DATE
	1.5,- Update date
	datetime2(7)

	SITE_SPA_DATE
	1.7,- Site indication and designation / classification dates
	datetime2(7)

	SITE_SPA_LEGAL_REF
	1.7,- Site indication and designation / classification dates
	Nvarchar(4000)

	SITE_SCI_PROP_DATE
	1.7,- Site indication and designation / classification dates
	datetime2(7)

	SITE_SCI_CONF_DATE
	1.7,- Site indication and designation / classification dates
	datetime2(7)

	SITE_SAC_DATE
	1.7,- Site indication and designation / classification dates
	datetime2(7)

	SITE_SAC_LEGAL_REF
	1.7,- Site indication and designation / classification dates
	Nvarchar(4000)

	SITE_EXPLANATIONS
	1.7,- Site indication and designation / classification dates
	Nvarchar(4000)

	SITE_LONGITUDE
	2.1,- Site-centre location [decimal degrees]
	Double

	SITE_LATITUDE
	2.1,- Site-centre location [decimal degrees]
	Double

	SITE_AREA
	2.2,- Area [ha]
	Double

	SITE_MARINE_AREA
	2.3,- Marine area [%]
	Double

	SITE_LENGTH
	2.4,- Site length [km]
	Double

	SITE_CHARACTERISTICS
	4.1,- General site character
	Nvarchar(4000)

	SITE_QUALITY
	4.2,- Quality and importance
	Nvarchar(4000)

	SITE_DESIGNATION
	5.3,- Site designation (optional)
	Nvarchar(4000)

	DOC_ID
	INTERNAL DATA BASE MODEL ID
	Int

	RESP_ID
	INTERNAL DATA BASE MODEL ID
	Int

	MGMT_ID
	INTERNAL DATA BASE MODEL ID
	Int

	MAP_ID
	INTERNAL DATA BASE MODEL ID
	Int

	DATE_CREATION
	
	datetime2(7)

	DATE_DELETION
	
	datetime2(7)

	DATE_UPDATE
	
	datetime2(7)

	VALIDATION_DATE
	
	datetime2(7)

	VALIDATION_COMMENT
	
	Nvarchar(4000)

	VALIDATION_USER
	
	Nvarchar (50)

	VALIDATION_STATUS
	
	Smallint

6.2.35 SITE_BIOGEO

	FIELD
	SDF
	Data Type

	SITE_CODE
	
	Nvarchar (9)

	BIOGEO_ID
	2.6,- Biogeographical Region(s)
	Int

	BIOGEO_PERCENT
	2.6,- Biogeographical Region(s)
	Double

6.2.36 SITE_OWNERSHIP

	FIELD
	SDF
	Data Type

	OWNERSHIP_ID
	INTERNAL DATA BASE MODEL ID
	Int

	SITE_CODE
	
	Nvarchar (9)

	OWNERSHIP_PERCENT
	4.4 Ownership
	Double

6.2.37 SITE_RELATION

	FIELD
	SDF
	Data Type

	SITE_RELATION_ID
	INTERNAL DATA BASE MODEL ID
	Int

	SITE_RELATION_SCOPE
	
	Nvarchar (1)

	SITE_RELATION_CODE
	5.2,- Relation of the described site with other sites
	Nvarchar (64)

	SITE_RELATION_CONVENTION
	5.2,- Relation of the described site with other sites
	Nvarchar (64)

	SITE_RELATION_SITENAME
	5.2,- Relation of the described site with other sites
	Nvarchar (256)

	SITE_RELATION_COVER
	5.2,- Relation of the described site with other sites
	Double

	SITE_RELATION_TYPE
	5.2,- Relation of the described site with other sites
	Nvarchar (1)

	SITE_CODE
	
	Nvarchar (9)

6.2.38 SPECIES

	FIELD
	SDF
	Data Type

	SPECIES_ID
	INTERNAL DATA BASE MODEL ID
	Int

	SPECIES_GROUP
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (1)

	SPECIES_CODE
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (4)

	SPECIES_NAME
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (128)

	SPECIES_SENSITIVE
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Smallint

	SPECIES_NP
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Smallint

	SPECIES_TYPE
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (1)

	SPECIES_SIZE_MIN
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Int

	SPECIES_SIZE_MAX
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Int

	SPECIES_UNIT
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (32)

	SPECIES_CATEGORY
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (1)

	SPECIES_DATA_QUALITY
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (2)

	SPECIES_POPULATION
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (1)

	SPECIES_CONSERVATION
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (1)

	SPECIES_ISOLATION
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (1)

	SPECIES_GLOBAL
	3.2,- Species referred to in Artcle 4 of Directive 2009/147/EC and listed in Annex II of Directive 92/43/EEC and site evaluation form them
	Nvarchar (1)

	SITE_CODE
	INTERNAL DATA BASE MODEL ID
	Nvarchar (9)

7 Background themes - spatial data sets

Feature class types for polygons will be defined to keep Natura 2000 sites spatial data. Polygons will represent sites, habitats and species areas. Feature classes are referenced to Natura2000 sites entity so each spatial record will represent one site. Similar is for habitats and species. Additional, background feature classes (themes), such as ortophoto maps (DOFs), raster topographic maps (TK25), digital terrain model can be easily configured via Visios product as base maps or layers.

The national coordinate reference system for Bosnia and Herzegovina (GK6) will be used for spatial data and mapping.

8 Application Design

8.1 Software
N2K application is based on Microsoft technology using Microsoft .NET framework 4.0, MS SQL Server 2008, Windows Server 2008 R2 x64 and ESRI ArcGIS components for Geodatabase and services.

8.2 Components
[image: image5.png]

Figure 5: N2K Components

8.2.1 Published web services

ArcGIS GDB is used as starting point for creating and publishing ArcGIS Server web services to enable full CRUD operations on GDB SDF and spatial data information. All queries (CRUD operations) to GDB will go via published web services. ArcGIS Server web services may be secured to permit only authorized users. Services are secured with proxy and token-based authentication require that a token be included in each request for a map, query, and so on. A token is an encrypted string that is derived from information about the authorized user, the date and time, and information about the client making the request. The token helps ensure that only authorized users have access to the service.

8.2.2 Web application

To enter application user must login with credentials registered in database. Access to specific parts (modules) of application depends on user role. N2K application shall consist of following modules and tools that will, among others, support:

1. Data Management module

· Administrator, Editor have full access to this module and Validator have limited access. This module provides add/edit/delete functionality of a site, view functionality of existing and printing of selected. Validator has only rights for edit and view funtcionality.

2. Data View module

· All roles have access in this module and role Viewer has access only to this module. It is possible only to browse through existing site/s data.

3. Tools module

· Administrator and Editor have access to this module. This module provides import and export functionality. It is only allowed to .mdb (Access) or .xml type of file to use.

4. User Management module

· Administrator have access to this module. This module is responsible for managing users: adding new user and assigning him role or deleting existing.

[image: image6.png]Web application

/ASP.NET Framework

ASP.NET MVC 4 Platform

Razor view engine
(=3

Figure 6: Application technology framework and standards

All modules are part of N2K web application as main interface for users that is built on ASP .NET MVC 4 and JavaScript technology. Using Model-View-Controller (MVC) pattern Graphical User Interface (GUI) is fully separated from business logic and data model. Presentation logic use HTML 5 and CSS 3 standards, various JS frameworks like Dojo and AngularJS to enable clear and easy client side modelling and binding. Depending of business case controlers logic can be implemented on client side or server side e.g. all forms should have client side validation and authorization handling should be done on server side. Server side programming language is C#. Data model is represented by published web services. Visios GIS Viewer described below is integrated in web application to ensure user usability.

ASP.NET membership built-in functionality is used to enable managing of user roles and permissions defining authorisation and authentication rules. For logging custom WEB API methods are used.

8.2.3 Visios (GIS Viewer)

The Visios is the flexible and modular software platform which provides generic, horizontal functionalities used for every use case such as map control or map visualisation and querying. The Visios is expanded with the widget framework which adds specific widgets to support specific functionalities and even more importantly the business roles focused functionalities which help executing business process related tasks. The most important element of the Visios’s architecture is the focus on business roles and tasks rather than specific features and functionalities. The ready-made widgets provide easy-to-use and intuitive context to the user where only the required workflow functionalities are presented and other functionalities are hidden, not shown or completely removed from the user interface. In such a way specific user groups have access only to functionalities which are actually needed to work on daily tasks.

[image: image7.png]

Figure 7: Visio architecture

9 TECHICAL CHARACTERISTIC OF THE HOSTING INFRASTRUCTURE

The Pilot N2K Application will be installed and configured in MoFTER according to the agreement with IT WG. Below, the main ITC component characteristics are described.

9.1 SERVER1 - ArcGIS Server 10

9.1.1 Main component description

	Server – name:
	DB-SRV-01

	Server – domain:
	Workgroup

	Server – IP address:
	192.168.10.4

	Operating System - main:
	MS Windows Server 2008 R2 64-bit

	Operating System - other:
	· .NET Framework 3.5SP1 (new version required)

· IE 8 (new version required)

· IIS 7.0

	Location ESRI SP, ESRI licence:
	Licenced

9.1.2 Installation characteristic

	Installation folder:
	C:\Program Files\ArcGIS

	Python folder:
	C:\Python25

	Installation type:
	All Features

	ArcGIS Server Instance name:
	ArcGIS

	ArcGIS Server Instance port:
	Default (8088)

9.2 GIS Server post installation

	GIS Server SOM Account:
	ArcGISSOM

	GIS Server SOC Account:
	ArcGISSOC

	GIS Server Webservices Account:
	ArcGISWebServices

	GIS Server Directory:
	c:\arcgisserver

	Web Server Name:
	DB-SRV-01

	Web Server port:
	Default (8088)

	Proxy server:
	Do not use proxy server for GIS Server Connections

	Server configuration file location:
	No

9.3 Web Applications post installation

	GIS Server Instance:
	ArcGIS

	GIS Server Instance port:
	Default (8088)

	GIS Server:
	DB-SRV-01

	GIS SERVER Web Services Account:
	ArcGISWebServices

9.4 ArcSDE for MSSQL

	Schema:
	SDE Schema

	SQL Server instance name
	GIS_Agro

	Connection authentication
	Windows authentication (Administrator)

	SQL Server instance:
	DB-SRV-01

10 TECHICAL CHARACTERISTIC OF THE HOSTING INFRASTRUCTURE

The Pilot N2K Application will be installed and configured in MoFTER according to the agreement with IT WG. Below, the main ITC component characteristics are described.

10.1 SERVER1 - ArcGIS Server 10

10.1.1 Main component description

	Server – name:
	DB-SRV-01

	Server – domain:
	Workgroup

	Server – IP address:
	192.168.10.4

	Operating System - main:
	MS Windows Server 2008 R2 64-bit

	Operating System - other:
	· .NET Framework 3.5SP1 (new version required)

· IE 8 (new version required)

· IIS 7.0

	Location ESRI SP, ESRI licence:
	Licenced

10.1.2 Installation characteristic

	Installation folder:
	C:\Program Files\ArcGIS

	Python folder:
	C:\Python25

	Installation type:
	All Features

	ArcGIS Server Instance name:
	ArcGIS

	ArcGIS Server Instance port:
	Default (8088)

10.2 GIS Server post installation

	GIS Server SOM Account:
	ArcGISSOM

	GIS Server SOC Account:
	ArcGISSOC

	GIS Server Webservices Account:
	ArcGISWebServices

	GIS Server Directory:
	c:\arcgisserver

	Web Server Name:
	DB-SRV-01

	Web Server port:
	Default (8088)

	Proxy server:
	Do not use proxy server for GIS Server Connections

	Server configuration file location:
	No

10.3 Web Applications post installation

	GIS Server Instance:
	ArcGIS

	GIS Server Instance port:
	Default (8088)

	GIS Server:
	DB-SRV-01

	GIS SERVER Web Services Account:
	ArcGISWebServices

10.4 ArcSDE for MSSQL

	Schema:
	SDE Schema

	SQL Server instance name
	GIS_Agro

	Connection authentication
	Windows authentication (Administrator)

	SQL Server instance:
	DB-SRV-01

Detail Design of N2K Pilot Application

65

[image: image9.jpg]Working together for-Natura

4

f‘@ eptisa M) o

